五年级可能性应用题和答案

|题数:100题
1.
一个骰子上有6个面,每个面上的点数分别是1、2、3、4、5、6,掷一次骰子,点数大于3的可能性是多少?

答案:

点数大于3的面有:4、5、6,共3个面。
掷一次骰子,点数大于3的可能性 = 点数大于3的面数 ÷ 总面数 = 3 ÷ 6 = 1/2 或 50%
答:掷一次骰子,点数大于3的可能性是1/2或50%。
2.
一个骰子有6个面,每个面上的点数分别是1到6,掷一次骰子,点数小于4的可能性是多少?

答案:

点数小于4的面有:1、2、3,共3个面。
掷一次骰子,点数小于4的可能性 = 点数小于4的面数 ÷ 总面数 = 3 ÷ 6 = 0.5 或 50%
答:掷一次骰子,点数小于4的可能性是0.5或50%。
3.
一个盒子里装有8个红球和2个白球,从中随机摸出一个球,摸到白球的可能性是多少?

答案:

总球数 = 8 + 2 = 10(个)
摸到白球的可能性 = 白球数 ÷ 总球数 = 2 ÷ 10 = 0.2
答:摸到白球的可能性是0.2。
4.
盒子里装有5个黑球和5个白球,从中随机摸出一个球,不放回,再随机摸出一个,两次都摸到黑球的可能性是多少?

答案:

第一次摸到黑球的可能性 = 黑球数 ÷ 总球数 = 5 ÷ 10 = 0.5
第二次(在第一次不放回后)摸到黑球的可能性 = 剩余黑球数 ÷ 剩余球数 = 4 ÷ 9
两次都摸到黑球的可能性 = 第一次摸到黑球的可能性 × 第二次摸到黑球的可能性 = 0.5 × 4/9 = 2/9
答:两次都摸到黑球的可能性是2/9。
5.
袋子里装有5个苹果和3个橙子,小明随机从袋子里拿出一个水果,拿到橙子的可能性是多少?

答案:

总水果数 = 5 + 3 = 8(个)
拿到橙子的可能性 = 橙子数 ÷ 总水果数 = 3 ÷ 8 = 0.375 或 37.5%
答:拿到橙子的可能性是0.375或37.5%。
6.
一个袋子里装有5个苹果和5个橙子,随机摸出一个水果,摸到苹果的可能性是多少?

答案:

总水果数 = 5 + 5 = 10(个)
摸到苹果的可能性 = 苹果数 ÷ 总水果数 = 5 ÷ 10 = 0.5
答:摸到苹果的可能性是0.5。
7.
一个骰子有6个面,每个面上的点数分别是1到6,掷一次骰子,点数大于3的可能性是多少?

答案:

点数大于3的面有:4、5、6,共3个面。
掷一次骰子,点数大于3的可能性 = 点数大于3的面数 ÷ 总面数 = 3 ÷ 6 = 0.5
答:掷一次骰子,点数大于3的可能性是0.5。
8.
盒子里有8个红球和2个蓝球,从中随机摸出一个球,摸到蓝球的可能性是多少?

答案:

总球数 = 8 + 2 = 10(个)
摸到蓝球的可能性 = 蓝球数 ÷ 总球数 = 2 ÷ 10 = 0.2
答:摸到蓝球的可能性是0.2。
9.
一个盒子里有5个红球和5个蓝球,每次从中随机摸出一个球,然后放回,这样连续摸3次,3次都摸到红球的可能性是多少?

答案:

每次摸到红球的可能性 = 红球数 ÷ 总球数 = 5 ÷ 10 = 0.5 或 50%
3次都摸到红球的可能性 = 第一次摸到红球的可能性 × 第二次摸到红球的可能性 × 第三次摸到红球的可能性 = 0.5 × 0.5 × 0.5 = 0.125 或 12.5%
答:3次都摸到红球的可能性是0.125或12.5%。
10.
袋子里装有6个苹果和4个梨,随机摸出一个水果,然后放回,再随机摸出一个,两次都摸到苹果的可能性是多少?

答案:

每次摸到苹果的可能性 = 苹果数 ÷ 总水果数 = 6 ÷ 10 = 0.6
两次都摸到苹果的可能性 = 第一次摸到苹果的可能性 × 第二次摸到苹果的可能性 = 0.6 × 0.6 = 0.36
答:两次都摸到苹果的可能性是0.36。
11.
盒子里有6个红球和4个蓝球,每次从中随机摸出一个球,然后放回,这样连续摸3次,3次都摸到红球的可能性是多少?

答案:

每次摸到红球的可能性 = 红球数 ÷ 总球数 = 6 ÷ 10 = 0.6
3次都摸到红球的可能性 = 第一次摸到红球的可能性 × 第二次摸到红球的可能性 × 第三次摸到红球的可能性 = 0.6 × 0.6 × 0.6 = 0.216
答:3次都摸到红球的可能性是0.216。
12.
袋子里装有5个苹果和5个橙子,随机从袋子里拿出一个水果,然后放回,再随机拿出一个,两次都拿到苹果的可能性是多少?

答案:

每次拿到苹果的可能性 = 苹果数 ÷ 总水果数 = 5 ÷ 10 = 1/2 或 0.5(转化为小数)
两次都拿到苹果的可能性 = 第一次拿到苹果的可能性 × 第二次拿到苹果的可能性 = 1/2 × 1/2 = 1/4 或 0.25(转化为小数)
答:两次都拿到苹果的可能性是1/4或0.25。
13.
一个盒子里装有2个红球、3个蓝球和5个黄球,从中随机摸出一个球,摸到不是蓝球的可能性是多少?

答案:

总球数 = 2 + 3 + 5 = 10(个)
摸到不是蓝球的可能性 = (总球数 - 蓝球数) ÷ 总球数 = (10 - 3) ÷ 10 = 0.7
答:摸到不是蓝球的可能性是0.7。
14.
袋子里装有4个苹果和6个香蕉,随机摸出一个水果,拿到苹果的可能性有多大?

答案:

总水果数 = 4 + 6 = 10(个)
拿到苹果的可能性 = 苹果数 ÷ 总水果数 = 4 ÷ 10 = 0.4
答:拿到苹果的可能性是0.4。
15.
小明抛硬币,前9次有5次正面朝上,第10次抛掷时,正面朝上的可能性是多少?

答案:

因为硬币有两面:正面和反面,所以每次抛掷正面朝上的可能性都是相同的。
第10次抛掷正面朝上的可能性 = 1 ÷ 2 = 1/2 或 50%
答:第10次抛掷时,正面朝上的可能性是1/2或50%。
16.
一个转盘上有红色、蓝色、绿色、黄色四个区域,每个区域大小相同,转动转盘,指针停在红色区域的可能性是多少?

答案:

总区域数 = 4(个)
停在红色区域的可能性 = 红色区域数 ÷ 总区域数 = 1 ÷ 4 = 0.25
答:停在红色区域的可能性是0.25。
17.
袋子里装有8个白球和2个黑球,从中任意摸出一个球,摸到黑球的可能性是多少?

答案:

总球数 = 8 + 2 = 10(个)
摸到黑球的可能性 = 黑球数 ÷ 总球数 = 2 ÷ 10 = 1/5
答:摸到黑球的可能性是1/5。
18.
盒子里装有3个红球、4个蓝球和5个绿球,从中随机摸出一个球,摸到不是绿球的可能性是多少?

答案:

总球数 = 3 + 4 + 5 = 12(个)
摸到不是绿球的可能性 = (总球数 - 绿球数) ÷ 总球数 = (12 - 5) ÷ 12 = 7/12
答:摸到不是绿球的可能性是7/12。
19.
袋子里装有5个苹果和3个橙子,随机摸出一个水果,摸到橙子的可能性有多大?

答案:

总水果数 = 5 + 3 = 8(个)
摸到橙子的可能性 = 橙子数 ÷ 总水果数 = 3 ÷ 8 = 0.375
答:摸到橙子的可能性是0.375。
20.
一个转盘上有8个区域,每个区域颜色不同,转动转盘,指针停在红色区域的可能性是多少?

答案:

总区域数 = 8(个)
红色区域数 = 1(个)(假设只有一个红色区域)
停在红色区域的可能性 = 红色区域数 ÷ 总区域数 = 1 ÷ 8 = 0.125 或 12.5%
答:停在红色区域的可能性是0.125或12.5%。
21.
袋子里装有3个苹果和2个梨,小华随机从袋子里拿出一个水果,然后放回,再随机拿出一个,两次都拿到苹果的可能性是多少?

答案:

第一次拿到苹果的可能性 = 苹果数 ÷ 总水果数 = 3 ÷ 5 = 0.6 或 60%
第二次(在第一次放回后)拿到苹果的可能性仍然是0.6或60%(因为每次拿都是独立的,且水果数量未变)
所以两次都拿到苹果的可能性 = 第一次拿到苹果的可能性 × 第二次拿到苹果的可能性 = 0.6 × 0.6 = 0.36 或 36%
答:两次都拿到苹果的可能性是0.36或36%。
22.
一个骰子上有6个面,每个面上的点数分别是1到6,掷一次骰子,点数是偶数的可能性是多少?

答案:

偶数点数面有:2、4、6,共3个面。
掷一次骰子,点数是偶数的可能性 = 偶数点数面数 ÷ 总面数 = 3 ÷ 6 = 1/2 或 50%
答:掷一次骰子,点数是偶数的可能性是1/2或50%。
23.
盒子里装有大小相同的红球、白球、蓝球各2个,从中随机摸出两个球,它们颜色相同的可能性是多少?

答案:

(此题涉及组合,但为简化计算,可用直观理解)
摸出两个颜色相同的球的方式有:红红、白白、蓝蓝,共3种组合(不考虑顺序)。
摸出两个球的总方式(不考虑颜色相同与否)为从6个球中摸出2个的组合数,但此处我们只需考虑颜色组合,因此直接给出答案的直观理解:
颜色相同的可能性 = 颜色相同的组合数 ÷ 总组合数 = 3 ÷ (6 × 5 ÷ 2 ÷ 1) = 3 ÷ 15 = 1/5
答:它们颜色相同的可能性是1/5。
24.
一个盒子里装有红、黄、蓝三种颜色的球各5个,从中任意摸出一个球,摸到红球的可能性是多少?

答案:

总球数 = 5 + 5 + 5 = 15(个)
摸到红球的可能性 = 红球数 ÷ 总球数 = 5 ÷ 15 = 1/3
答:摸到红球的可能性是1/3。
25.
袋子里装有8个苹果和2个香蕉,随机从袋子里拿出一个水果,拿到香蕉的可能性是多少?

答案:

总水果数 = 8 + 2 = 10(个)
拿到香蕉的可能性 = 香蕉数 ÷ 总水果数 = 2 ÷ 10 = 0.2 或 20%
答:拿到香蕉的可能性是0.2或20%。
26.
盒子里有5个黑球和5个白球,从中随机摸出一个球,不放回,再随机摸出一个,两次都摸到黑球的可能性是多少?

答案:

第一次摸到黑球的可能性 = 黑球数 ÷ 总球数 = 5 ÷ 10 = 0.5
第二次(在第一次不放回后)摸到黑球的可能性 = 剩余黑球数 ÷ 剩余球数 = 4 ÷ 9
两次都摸到黑球的可能性 = 第一次摸到黑球的可能性 × 第二次摸到黑球的可能性 = 0.5 × 4/9 = 4/18 = 2/9
答:两次都摸到黑球的可能性是2/9。
27.
袋子里装有4个苹果和6个梨,随机从袋子里拿出一个水果,然后放回,再随机拿出一个,两次都拿到梨的可能性是多少?

答案:

每次拿到梨的可能性 = 梨数 ÷ 总水果数 = 6 ÷ 10 = 0.6
两次都拿到梨的可能性 = 第一次拿到梨的可能性 × 第二次拿到梨的可能性 = 0.6 × 0.6 = 0.36
答:两次都拿到梨的可能性是0.36。
28.
袋子里装有4个苹果和6个橙子,随机从袋子里拿出一个水果,拿到苹果的可能性是多少?

答案:

总水果数 = 4 + 6 = 10(个)
拿到苹果的可能性 = 苹果数 ÷ 总水果数 = 4 ÷ 10 = 2/5 或 0.4(转化为小数)
答:拿到苹果的可能性是2/5或0.4。
29.
盒子里装有3个红球、4个蓝球和3个绿球,从中随机摸出一个球,摸到红球或蓝球的可能性是多少?

答案:

总球数 = 3 + 4 + 3 = 10(个)
摸到红球或蓝球的可能性 = (红球数 + 蓝球数) ÷ 总球数 = (3 + 4) ÷ 10 = 0.7
答:摸到红球或蓝球的可能性是0.7。
30.
一个转盘上有红色、蓝色、绿色三个区域,转动转盘,指针停在绿色区域的可能性是多少?

答案:

(假设三个区域大小相同)
总区域数 = 3(个)
停在绿色区域的可能性 = 绿色区域数 ÷ 总区域数 = 1 ÷ 3 = 1/3 或约等于 0.333(转化为小数)
答:停在绿色区域的可能性是1/3或约等于0.333。
31.
一个盒子里装有3个红球、4个蓝球和5个绿球,从中随机摸出一个球,摸到蓝球或绿球的可能性是多少?

答案:

总球数 = 3 + 4 + 5 = 12(个)
32.
一个转盘上有红色、黄色、蓝色、绿色四个区域,每个区域大小相同,转动转盘,指针停在红色或黄色的可能性是多少?

答案:

总区域数 = 4(个)
停在红色或黄色的可能性 = (红色区域数 + 黄色区域数) ÷ 总区域数 = (1 + 1) ÷ 4 = 0.5
答:停在红色或黄色的可能性是0.5。
33.
一个盒子里装有10个球,其中红球、蓝球、白球各3个,还剩下一个是黄球,从中随机摸出一个球,摸到红球或白球的可能性是多少?

答案:

总球数 = 10(个)
摸到红球或白球的可能性 = (红球数 + 白球数) ÷ 总球数 = (3 + 3) ÷ 10 = 0.6
答:摸到红球或白球的可能性是0.6。
34.
一个盒子里装有2个红球、3个蓝球和5个黄球,从中随机摸出一个球,摸到蓝球或黄球的可能性是多少?

答案:

总球数 = 2 + 3 + 5 = 10(个)
摸到蓝球或黄球的可能性 = (蓝球数 + 黄球数) ÷ 总球数 = (3 + 5) ÷ 10 = 8/10 = 0.8
答:摸到蓝球或黄球的可能性是0.8。
35.
一个盒子里有6个红球和4个蓝球,从中随机摸出一个球,摸到红球的可能性是多少?

答案:

总球数 = 6 + 4 = 10(个)
摸到红球的可能性 = 红球数 ÷ 总球数 = 6 ÷ 10 = 0.6 或 60%
答:摸到红球的可能性是0.6或60%。
36.
一个盒子里装有3个红球和5个黄球,从中随机摸出一个球,摸到红球的可能性是多少?

答案:

总球数 = 3 + 5 = 8(个)
摸到红球的可能性 = 红球数 ÷ 总球数 = 3 ÷ 8 = 3/8 或约等于 0.375(转化为小数)
答:摸到红球的可能性是3/8或约等于0.375。
37.
袋子里装有3个苹果和7个香蕉,随机从袋子里拿出一个水果,拿到苹果的可能性是多少?

答案:

总水果数 = 3 + 7 = 10(个)
拿到苹果的可能性 = 苹果数 ÷ 总水果数 = 3 ÷ 10 = 0.3
答:拿到苹果的可能性是0.3。
38.
盒子里装有大小相同的红球、黄球、绿球各4个,从中随机摸出两个球,它们颜色不同的可能性是多少?

答案:

(此题涉及组合,但为简化计算,可用直观理解)
摸出两个颜色不同的球的方式有:红黄、红绿、黄绿,共3种组合(不考虑顺序)。
因为每种颜色的球都有4个,所以总的可能性较多,但颜色不同的组合相对较少。
为简化计算,我们直接给出答案的直观理解:
颜色不同的可能性小于颜色相同的可能性(因为颜色相同的组合只有3种:红红、黄黄、绿绿),且总的可能性为从12个球中摸出2个的组合数。
所以颜色不同的可能性小于1/2(因为还包括颜色相同的情况)。
答:它们颜色不同的可能性小于1/2。
39.
盒子里有4个黑球和6个白球,从中随机摸出一个球,不放回,再随机摸出一个,两次都摸到白球的可能性是多少?

答案:

第一次摸到白球的可能性 = 白球数 ÷ 总球数 = 6 ÷ 10 = 0.6 或 60%
第二次(在第一次不放回后)摸到白球的可能性 = 剩余白球数 ÷ 剩余球数 = 5 ÷ 9(因为第一次已经摸走了一个白球)
所以两次都摸到白球的可能性 = 第一次摸到白球的可能性 × 第二次摸到白球的可能性 = 0.6 × (5/9) = 1/3 或 约33.33%
答:两次都摸到白球的可能性是1/3或约33.33%。
40.
一个骰子上有6个面,点数分别是1到6,掷一次骰子,点数小于4的可能性是多少?

答案:

点数小于4的面有:1、2、3,共3个面。
掷一次骰子,点数小于4的可能性 = 点数小于4的面数 ÷ 总面数 = 3 ÷ 6 = 0.5
答:掷一次骰子,点数小于4的可能性是0.5。